ROUNDO

Section Bending Machines
Type R-1 through R-21-S

ROUNDO is the world's leading manufacturer of plate and section bending machines. The company was formed in 1964, and has since delivered almost 16000 machines to satisfied customers around the globe. ROUNDO machines are world-renowned for outstanding performance, reliability and quality.

ROUNDO offers the largest selection of section bending machines on the market. We produce over 20 different standard sizes, from the R-1, our smallest machine, to the R-21-S, the strongest section bending machine in the world! Our machines are always more powerful and more heavily proportioned in terms of frame, shaft size, bearings and drive torque than machines from other suppliers. CNC controls and a wide array of options are available for all models.

TWO BROAD RANGES

R-1 to R-6 are basic machines for all types of section bending. The guide rolls are manually adjusted and fixed to the swing arms. The range of " S "-models, R-2-S to R-21-S, offers enhanced versatility due to the unique design of the hydraulic guide rolls.

MAIN ADVANTAGES WITH ROUNDO BENDING MACHINES

- Heaviest proportioned main frame

The main frame on all ROUNDO section bending machines is welded steel construction, machined and line bored using the heaviest components of any comparable machine for added strength and rigidity. ROUNDO is the only manufacturer who stress-relieves every frame after welding.

- Largest shaft diameters and bearing sizes

Roll shafts are made from high-strength chrome-nickel alloy steel, and are the largest diameter shafts of any comparable machine. These heavily proportioned shafts help minimize deflection, resulting in improved bending. The roll shafts are journalled in oversized SKF roller bearings for greatest efficiency and long life. The standard tooling is a combination set for bending angles both leg-out and leg-in, flat bar on flat and on edge, T-bar stem-out and stem-in as well as stem-down, small square bar and even small solid round bar. Normally, no additional spacers are required.

- Highest drive torque and rotation speed

ROUNDO section bending machines provide the greatest drive torque of any comparable machine. Greater drive torque means the section can generally be rolled in fewer passes, often resulting in less deformation to the section being rolled. All three rolls are driven at all times. The maximum rotation speed on all models is generally $7 \mathrm{~m} / \mathrm{min}$, considerably higher than other comparable machines.

- Greatest bending roll force

The two lower rolls are individually adjusted by hydraulic cylinders. The rolls are sized to allow ROUNDO section bending machines to generate more bending power than any comparable machine, providing the largest section modulus capacity.

- Most powerful guide rolls

ROUNDO section bending machines feature the largest, most powerful guide rolls available on the market. This allows them to take the twist out of the most massive sections within the capacity of the machine. The hardened steel guide rolls, including "leg-in" guide rolls, are standard on every model.

CONTROLS

The ROUNDO wCNC ${ }^{2}$ Control is a PC-based CNC control running under Microsoft® Windows, providing an operator-friendly graphical interface. This highly advanced and powerful system can control up to 24 axes, including the main bending rolls, the powered pushing rolls and support devices, and even the special devices used to bend beams and channels on X-X axis.

The ROUNDO wCNC² Control software includes a library of bending wizards to rapidly produce good parts. Even short runs can be efficiently rolled using this system. The CNC Control is available for all models.

The ROUNDO RLC/3 Logic Control System is a PLC based control system designed and developed normally for small section and plate bending machines. This system can control up to 7 -axes and the possibility to use USB memory allows infinite number of bending programs.

The ROUNDO RLC/1 Position Control System is a basic positioning control with possibility to preset two values for each axis.
The positioning control automatically stops the movement of the bending roll when the pre-set value is reached. The system is designed to make repetitive bends.

Electronic digital readouts are available for all models to improve the positioning accuracy of the bending rolls when adjusted by the operator.

ROUNDO wCNC² IS AS EASY AS 1,2,3...

Select the wizard function and a new CNC program will automatically be generated with all necessary steps.

Select the shape you want or create your own.

Enter the values for the different radii and lengths.

Simulate in full 3D to verify that the programmed part corresponds to the print.

Make easy adjustments to get the

The three bending shafts are journalled in heavy duty SKF ball bearings. The guide rolls are hydraulically adjustable in three directions on most of the models (two directions on R-2-S to R-4-S). The hardened steel guide rolls are used to control the attitude of the material going into and coming out of the bending rolls. They are used when bending angle leg-out and leg-in and can be effective in many other bending applications.

STANDARD EQUIPMENT R-2-S TO R-21-S

- Drive on all three rolls.
- Combined horizontal/vertical design (R-2-S to R-4-S)
- R-2-S to R-7-S: Infinitely variable rotation speed via hydraulic motor.
- R-52-S to R-72-S: Infinitely variable rotation speed via double hydraulic motors one for the top roll and one for the lower rolls.
- R-8-S to R-16-S: Infinitely variable rotation speed via hydraulic motors, one for each roll.
- Automatic compensation for the speed difference between the rolls.
- R-2-S to R-7-S: Via adjustable slip clutch.
- Other models: Compensation built into the hydraulic system.
- Hydraulic adjustment of the lower rolls.
- Digital display showing the position of the lower rolls (R-8-S to R-16-S).
- Hydraulically operated guide rolls.
- Set of standard rolls combined for standard angle leg-out and leg-in, flat bar on flat and on edge, "T", small round bar and square bar. (R-2-S to R-7-S)
- Universal rolls for standard angle leg-out and leg-in, flat bar on flat and on edge, I and U beams the easy way, small round bar and square bar. (R-8-S to R-16-S)
- SKF roller bearings in all main journals.
- Emergency stop button.
- Portable push button control for all functions (R-2-S to R-4-S).
- Pendant push button control for all functions including electrical speed adjustment by potentiometer (R-5-S to R-72-S).
- Control panel on swing arm for all functions including electronic speed adjustment by joysticks for rotation and adjustment of lower rolls. (R-8-S to R-16-S).

SPECIAL ROLLS

- Rolls for pipe. Each set of rolls can be designed for one or two different sizes of pipe.
- Rolls for round bar.
- Rolls for square and rectangular tubing.
- Combined rolls for I and U beams the easy way, adjustable for all different sizes covering the capacity of the machine.
- Rolls for high production of rings by spiral bending of flat bar, pipe and other profiles.
- Rolls for special sections and profiles are designed on request. In some cases the rolls are made of nylon to avoid marking and tearing on easily damaged sections. (R-5-S to R-72-S)
- Universal rolls.
- Beam bending rolls.

OPTIONAL EQUIPMENT R-2-S TO R-21-S

- Combined horizontal/vertical design (R-5-S to R-72-S).
- Increased rolling speed with full drive torque.
- Digital display showing the positions of the lower rolls (R-2-S to R-72-S).
- Microhydraulic adjustment of the lower rolls.
- Hydraulic turning of guide rolls (R-2-S to R-4-S).
- Separate hydraulic drive on the top shaft (R-2-S to R-7-S).
- Motorized height adjustment on swing arm.
- Spiral bending device for production of coils (R-2-S to R-72-S).
- Hydraulic pulling roll unit for bending 1- U- and H-beams the hard way.
- Special guide unit for bending 1- and U-beams the hard way (R-5-S to R-13-S).
- Pushing roll unit for improved bending of thin sections and angle bars
- (R-2-S to R-72-S).
- Wide selection of special rolls.
- Mandrel system to improve bending results on hollow sections.
- Pushing unit for small diameters and heavy bending.
- Hydraulic tooling adjustment.
- ROUNDO wCNC2 control.
- ROUNDO RLC/3 Logic control.
- ROUNDO RLC/1 Position control.

R-14-S
Bending flat bar 250x100 mm (10 " x 4")

Capacities and
Specifications R-2-S to R-16-S

All dimensions in inches unless otherwise noted.									
Max. Section Modulus (in. ${ }^{3}$):	0.7-1.0	1.3-1.9	2-4	3-5	6-10	11-20	19-38	25-45	37-85
Diameter of Standard Rolls:	8.7"	$10 "$	12.2"	15.2"	18.1"	21.7"	$26 "$	29"	31.5"
Motor HP at 480 V :	4-1/2	8	12	17.5	23	45	55	95	100
Approx. Weight (lbs.):	3100	4000	6400	10200	17200	25100	40700	55000	70400

1) Min. bendingdiameter depends on grade of deformation that can be accepted.
2) Machine with extended shafts allows wider sections than specified. \square $=$ With Special Rolls
3) Depending on bending diameter
4) With beam-on-edge device for rolling beams and channels on X - X axis

The R-1 to R-6 models of ROUNDO section bending machines are basic machines with a strong and rigid design. The three bending shafts are journalled in heavy SKF bearings. The top roll is equipped with a slip clutch, compensating for the difference in speed of the inner and outer diameters of the section being bent. Mechanically operated guide rolls, which facilitate bending of non-symmetrical sections, especially angles, are standard equipment.

R-1, R-2, R-3 and R-4-M worm gear motor drives all three rolls irrespective of adjustment position.

R-4 H, R-5 and R-6 All three rolls are driven irrespective of adjustment position by hydraulic motors, providing infinitely variable rotation speed.

STANDARD EQUIPMENT R-1 to R-6

- Combined horizontal/vertical design
- Compensating and adjustable slip clutch for the top roll.
- Set of standard rolls combined for standard angle leg-out and legin, flat bar on flat and on edge, "T", small round bar and square bar.
- Complete guide roll assemblies which automatically follow the operation of the hydraulically operated lower rolls, including leg-in attachment.
- Dial indicators showing the position of the lower rolls.
- Hydraulic adjustment of the two lower rolls.
- SKF bearings in all journals.
- Emergency stop button.
- Roll adjustment by hand levers and portable push button control for roll rotation (R-1 and R-2).
- Portable push button control for all functions (R-3 to R-6).

SPECIAL ROLLS

- Rolls for pipe. Each set of rolls can be designed for one or two different sizes of pipe.
- Rolls for round bar.
- Rolls for square and rectangular tubing.
- Combined rolls for I and U beams the easy way, adjustable for all different sizes covering the capacity of the machine.
- Rolls for high production of rings by spiral bending of flat bar, pipe and other profiles.
- Rolls for special sections and profiles are designed on request. In some cases the rolls are made of nylon to avoid marking and tearing on easily damaged sections.

Bending rolls for angle leg-out and leg-in, flat bar on-flat and on-edge, square bar, and T-bar stem-out and stem-in are supplied as standard equipment. The rolls are through-hardened and are mounted on the shafts by means of a single key, thus making it easy to adjust and change over to the various special rolls that can be supplied as optional equipment.

OPTIONAL EQUIPMENT R1 to R6

- Hydraulic infinitely variable drive on all three rolls. (R-1 to R-3).
- Infinitely variable drive via frequency changer (R-1 to R-4).
- Portable push button control for all functions (R-1, R-2).
- Digital display showing the positions of the lower rolls.
- Microhydraulic adjustment of the lower rolls.
- Pushing roll unit for improved bending of thin sectional and angle bars.
- Special guide unit for bending I- and U-beams the hard way (R-5 and R-6).
- Spiral bending device for pipes and flat bar.
- Half pipe equipment to form and bend a half pipe from a flat strip.
- Wide selection of special rolls.
- ROUNDO wCNC ${ }^{2}$ Control.
- ROUNDO RLC/3 Logic control.
- ROUNDO RLC/1 Position control.

Section	R-1		R-2		R-3		R-4		R-5		R-6	
	Standard Rolls	Special Rolls										
	$\begin{gathered} 2 \times 2 \times 3 / 16 \\ \text { To Ø } 20 \end{gathered}$	Small Sections To Ø 5	$\begin{gathered} 2 \times 2 \times 5 / 16 \\ \text { To Ø } 20 \end{gathered}$	Small Sections To Ø 6	$\begin{gathered} 3 \times 3 \times 5 / 16 \\ \text { To ø } 30 \end{gathered}$	Small Sections To Ø 7	$\begin{gathered} 3 \frac{1}{2} \times 3 \frac{1}{2} \times 3 / 8 \\ \text { To } \varnothing 36 \end{gathered}$	Small Sections To Ø 10	$\begin{gathered} 4112 \times 4 \frac{1}{2} \times 1 / 2 \\ \text { To } \varnothing 50 \end{gathered}$	Small Sections To Ø 13	$\begin{gathered} 5 \times 5 \times 5 / 8 \\ \text { To Ø } 65 \end{gathered}$	$\begin{gathered} 11 / 2 \times 1 \frac{1}{2} \times 1 / 4 \\ \text { To Ø } 16 \end{gathered}$
	$\begin{gathered} 2 \times 2 \times 3 / 16 \\ \text { To Ø } 27 \end{gathered}$	Small Sections To To $\varnothing 61 / 2$	$\begin{aligned} & 2 \times 2 \times 1 / 4 \\ & \text { To To Ø } 24 \end{aligned}$	Small Sections To To Ø 8	$\begin{gathered} 21 / 2 \times 21 / 2 \times 5 / 16 \\ \text { To Ø } 40 \end{gathered}$	Small Sections To Ø 10	$\begin{gathered} 3 \times 3 \times 3 / 8 \\ \text { To } \varnothing 44 \end{gathered}$	Small Sections To Ø 14	$\begin{gathered} 4 \times 4 \times 3 / 8 \\ \text { To Ø } 60 \end{gathered}$	Small Sections To Ø 16	$\begin{gathered} 5 \times 5 \times 1 / 2 \\ \text { To } \varnothing 90 \end{gathered}$	$\begin{gathered} 11 / 2 \times 1 \frac{1}{2} \times 1 / 4 \\ \text { To Ø } 18 \end{gathered}$
	$\begin{gathered} 2 \times 2 \times 3 / 16 \\ \text { To Ø } 16 \end{gathered}$	Small Sections To Ø 5	$\begin{gathered} 2 \times 2 \times 5 / 16 \\ \text { To Ø } 18 \end{gathered}$	Small Sections To Ø 6	$\begin{gathered} 3 \times 3 \times 5 / 16 \\ \text { To Ø } 30 \end{gathered}$	Small Sections To Ø 7	$\begin{gathered} 3112 \times 31 / 2 \times 3 / 8 \\ \text { To } \varnothing 36 \end{gathered}$	Small Sections To Ø 10	$\begin{array}{r} \text { WT } 4 \times 29 \\ \text { To } \varnothing 40 \end{array}$	$\begin{gathered} \text { Small Sections } \\ \text { To } \varnothing 13 \end{gathered}$	$\begin{aligned} & \text { WT } 5 \times 50 \\ & \text { To } \varnothing 60 \end{aligned}$	Small Sections To Ø 16
	$\begin{gathered} 2 \times 2 \times 3 / 16 \\ \text { To Ø } 20 \end{gathered}$	Small Sections To Ø $51 / 2$	$\begin{gathered} 2 \times 2 \times 1 / 4 \\ \text { To Ø } 22 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Small Sections } \\ \text { To } \varnothing 8 \end{array}$	$\begin{gathered} 3 \times 3 \times 5 / 16 \\ \text { To Ø } 35 \end{gathered}$	Small Sections To Ø 10	$\begin{gathered} \text { WT } 3 \times 12.5 \\ \text { To } \varnothing 36 \end{gathered}$	$\begin{array}{\|c} \text { Small Sections } \\ \text { To Ø } 12 \end{array}$	$\begin{array}{r} \text { WT } 4 \times 29 \\ \text { To Ø } 60 \end{array}$	$\begin{gathered} \text { Small Sections } \\ \text { To } \varnothing 14 \end{gathered}$	$\begin{gathered} \text { WT } 5 \times 44 \\ \text { To } \varnothing 65 \end{gathered}$	$\begin{aligned} & \text { Small Sections } \\ & \text { To Ø } 16 \end{aligned}$
	$\begin{gathered} 2 \times 2 \times 3 / 16 \\ \text { To Ø } 16 \end{gathered}$	Small Sections To Ø 5	$\begin{gathered} 2 \times 2 \times 1 / 4 \\ \text { To Ø } 18 \end{gathered}$	Small Sections To Ø 8	$\begin{gathered} 3 \times 3 \times 5 / 16 \\ \text { To Ø } 30 \end{gathered}$	Small Sections To Ø 8	$\begin{aligned} & \text { WT } 3 \times 7.5 \\ & \text { To } \varnothing 36 \end{aligned}$	Small Sections To ø 11	$\begin{array}{r} \text { WT } 4 \times 12 \\ \text { To } \varnothing 50 \end{array}$	Small Sections To $\varnothing 13$	$\begin{array}{\|l\|} \hline \text { WT } 5 \times 13 \\ \text { To } \varnothing 60 \end{array}$	Small Sections To Ø 16
	$\begin{aligned} & 2 \times 3 / 8 \\ & \text { To Ø } 12 \end{aligned}$	Small Sections To Ø $41 / 2$	$\begin{gathered} 2-1 / 4 \times 1 / 2 \\ \text { To Ø } 16 \end{gathered}$	Small Sections To Ø 6	$\begin{aligned} & 3 \times 5 / 8 \\ & \text { To } \varnothing 20 \end{aligned}$	Small Sections To Ø 7	$\begin{aligned} & 4 \times 3 / 4 \\ & \text { To Ø } 32 \end{aligned}$	Small Sections To $\varnothing 10$	$\begin{aligned} & 5 \times 3 / 4 \\ & \text { To Ø } 36 \end{aligned}$	Small Sections To Ø 13	$\begin{aligned} & 5 \times 1-1 / 4 \\ & \text { To } \varnothing 50 \end{aligned}$	Small Sections To Ø 16
\square	$\begin{aligned} & 4 \times 5 / 8 \\ & \text { To Ø } 12 \end{aligned}$	Small Sections To Ø 5	$\begin{aligned} & 6 \times 5 / 8 \\ & \text { To Ø } 16 \end{aligned}$	Small Sections To Ø 6	$\begin{aligned} & 8 \times 3 / 4 \\ & \text { To Ø } 20 \end{aligned}$	Small Sections To Ø 7	$\begin{gathered} 8 \times 1-3 / 16 \\ \text { To Ø } 32 \end{gathered}$	$\begin{aligned} & \text { Small Sections } \\ & \text { To Ø } 10 \end{aligned}$	$\begin{gathered} 10 \times 1-3 / 16 \\ \text { To Ø } 36 \end{gathered}$	$\begin{gathered} \text { Small Sections } \\ \text { To } \varnothing 13 \end{gathered}$	$\begin{gathered} 10 \times 1-1 / 2 \\ \text { To } \varnothing 50 \end{gathered}$	Small Sections To $\varnothing 16$
	$\begin{gathered} 1-3 / 16 \\ \text { To } \varnothing 16 \end{gathered}$	Small Sections To Ø $41 / 2$	$\begin{gathered} 1-3 / 8 \\ \text { To Ø } 18 \end{gathered}$	Small Sections To Ø 6	$\begin{gathered} 1-3 / 4 \\ \text { To } \varnothing 18 \end{gathered}$	Small Sections To Ø 7	$\stackrel{2}{\text { To }} \begin{gathered} 20 \end{gathered}$	Small Sections To Ø 10	$\begin{gathered} 2-1 / 2 \\ \text { To Ø } 26 \end{gathered}$	Small Sections To ø 13	$\begin{gathered} 2-3 / 4 \\ \text { To Ø } 40 \end{gathered}$	Small Sections To Ø 16
- 1 -	Small Sections	$\begin{aligned} & \varnothing 1-3 / 8 \\ & \text { To Ø } 20 \end{aligned}$	Small Sections	$\begin{aligned} & \varnothing 1-5 / 8 \\ & \text { To Ø } 18 \end{aligned}$	Small Sections	$\begin{gathered} \not \varnothing 2 \\ \text { To } \varnothing 20 \end{gathered}$	Small Sections	$\begin{aligned} & \varnothing 2-1 / 4 \\ & \text { To Ø } 20 \end{aligned}$	Small Sections	$\begin{aligned} & \varnothing 2-3 / 4 \\ & \text { To Ø } 28 \end{aligned}$	Small Sections	$\begin{aligned} & \varnothing 3-1 / 2 \\ & \text { To } \varnothing 40 \end{aligned}$
0 O	Special Rolls Only	$\begin{gathered} \text { 1-1/2 Sch. } 40 \\ \text { To Ø } 20 \end{gathered}$	Special Rolls Only	$\begin{aligned} & 2 \text { Sch. } 40 \\ & \text { To } \varnothing 24 \end{aligned}$	Special Rolls Only	$\begin{aligned} & 2 \text { 1/2 Sch. } 40 \\ & \text { To Ø } 32 \end{aligned}$	Special Rolls Only	$3 \text { Sch. } 40$ $\text { To ø } 36$	Special Rolls Only	$\begin{aligned} & 4 \text { Sch. } 40 \\ & \text { To } 48 \end{aligned}$	Special Rolls Only	$\begin{aligned} & 6 \text { Sch. } 40 \\ & \text { To } \varnothing 90 \end{aligned}$
	Special Rolls Only	2-1/2 O.D.	Special Rolls Only	3 O.D.	Special Rolls Only	3-1/2 O.D.	Special Rolls Only	4 O.D.	Special Rolls Only	5 O.D.	Special Rolls Only	7 O.D.
T T	Small Sections	$11 / 2 \times 1 \frac{1}{2} \times 1 / 8$	Small Sections	$2 \times 2 \times 3 / 16$	Small Sections	$21 / 2 \times 21 / 2 \times 3 / 16$	Small Sections	$3 \times 3 \times 3 / 16$	Small Sections	$4 \times 4 \times 1 / 4$	Small Sections	$5 \times 5 \times 5 / 16$
I	Small Sections	$\stackrel{3}{\text { To }} \stackrel{20}{ }$	Small Sections	$\begin{gathered} 4 \\ \text { To Ø } 24 \end{gathered}$	Small Sections	$\begin{gathered} 5 \\ \text { To } \varnothing 28 \end{gathered}$	Small Sections	$\begin{aligned} & \text { S6 } \times 17.25 \\ & \text { To Ø } 32 \end{aligned}$	Small Sections	$\begin{aligned} & S 8 \times 23 \\ & \text { To Ø } 36 \end{aligned}$	Small Sections	$\begin{aligned} & \text { S12 } \times 50 \\ & \text { To } \varnothing 45 \end{aligned}$
$[$	--	--	--	--	--	--	--	$\begin{aligned} & \text { W6 } \times 16 \\ & \text { To } \varnothing 40 \end{aligned}$	Small Sections	$\begin{aligned} & \text { W8 } \times 18 \\ & \text { To Ø } 45 \end{aligned}$	Small Sections	$\begin{gathered} \text { W } 12 \times 30 \\ \text { To } \varnothing 40 \end{gathered}$
	Small Sections	$\begin{aligned} & \text { C3 } \times 6.0 \\ & \text { To Ø } 20 \end{aligned}$	Small Sections	$\begin{aligned} & \text { C4 } \times 7.25 \\ & \text { To } \varnothing 20 \end{aligned}$	Small Sections	$\begin{gathered} C 5 \times 9 \\ \text { To } \varnothing 28 \end{gathered}$	Small Sections	$\begin{gathered} \text { C7 } \times 14.75 \\ \text { To Ø } 32 \end{gathered}$	Small Sections	$\begin{gathered} \text { C8 } \times 18.75 \\ \text { To Ø } 36 \end{gathered}$	Small Sections	$\begin{aligned} & \text { C12 } \times 30 \\ & \text { To } \varnothing 45 \end{aligned}$
\pm	Small Sections	$\begin{aligned} & \text { C3 } \times 6.0 \\ & \text { To Ø } 20 \end{aligned}$	Small Sections	$\begin{aligned} & \text { C4 } \times 7.25 \\ & \text { To } \varnothing 24 \end{aligned}$	Small Sections	$\begin{gathered} C 5 \times 9 \\ \text { To } \varnothing 32 \end{gathered}$	Small Sections	$\begin{gathered} \text { C7 } \times 14.75 \\ \text { To Ø } 36 \end{gathered}$	Small Sections	$\begin{gathered} \text { C8 } \times 18.75 \\ \text { To } \varnothing 40 \end{gathered}$	Small Sections	$\begin{aligned} & \text { C12 } \times 30 \\ & \text { To } \varnothing 45 \end{aligned}$
\square	--	--	--	--	--	--	Special Rolls Only	$\begin{gathered} \text { C3 } \times 6 \\ \text { To } \varnothing 200 \end{gathered}$	Special Rolls Only	$\begin{aligned} & \text { C4 } \times 7.25 \\ & \text { To Ø } 300 \end{aligned}$	Small Sections	$\begin{aligned} & \text { C7 } \times 12.25 \\ & \text { To } \varnothing 400 \end{aligned}$
\square	--	--	--	--	--	--	Special Rolls Only	$\begin{aligned} & S 3 \times 7.5 \\ & \text { To Ø } 60 \end{aligned}$	Special Rolls Only	$\begin{aligned} & S 4 \times 7.7 \\ & \text { To } \varnothing 100 \end{aligned}$	Special Rolls Only	$\begin{aligned} & \text { W } 6 \times 16 \\ & \text { To } \varnothing 250 \end{aligned}$

All data valid for ASTM A-36 steel. All dimensions in inches unless otherwise noted.

Max. Section Modulus (in.):	$0.24-0.4$	$0.42-0.6$	$0.85-1.10$	$1.8-2.2$	$2.9-3.5$	
Diameter of standard Rolls:	$6-7 / 8^{\prime \prime}$	$7-1 / 2^{\prime \prime}$	$9 "$	$11 "$	$5.9-7.0$	
Rolling Speed (FPM):	23	28	30	$14-1 / 4 "$	$0-23$	$0-23$
Motor HP at 480 V:	2,5	4	5	9	$0-23$	
Approx. Weight (lbs.):	1500	1765	2800	5300	12	

[^0]

The world's most powerful section bending machine

Model R-21-S is designed mainly to bend solid profiles. The capacity of this machine makes it possible to bend flat bar $500 \times 100 \mathrm{~mm}$ (20 " x 4") the hard way, or square bar $350 \times 350 \mathrm{~mm}$ (14 " x 14 "), both in steel with yield point $360 \mathrm{~N} / \mathrm{mm}^{2}$ (52,500 PSI). Each lower roll can apply a force of up to 1000 Tons.

Other Machines from Roundo

4-Roll Plate Bending Machines

The standard range of 4-roll plate bending machines covers plate thicknesses of $3-100 \mathrm{~mm}(1 / 8$ " to 4 ") and widths of $1000-8000 \mathrm{~mm}$ (3^{\prime} to 26^{\prime}).

3-Roll Plate Bending Machines

Three-Roll Double-Pinch plate bending machines.
Available in lengths up to $8000 \mathrm{~mm}\left(26^{\prime}\right)$ and thickness to 100 mm (4").

Quick Rolling Machines

Plate bending machines for large production runs of cylinders with cycle times as short as 10 seconds. For plate thicknesses up to $12 \mathrm{~mm}\left(1 / 2^{\prime \prime}\right)$ and widths up to about 2000 mm (6').

Flanging and Punching Machines
For flanging and punching cylinders in the same operation. Cylinder diameters of $350-3000 \mathrm{~mm}$ ($14^{\prime \prime}$ to $120^{\prime \prime}$) and plate thicknesses up to $8 \mathrm{~mm}\left(5 / 16^{\prime \prime}\right)$.

Plate Straightening Machines
Straighten plates with thicknesses of 2-40 $\mathrm{mm}\left(0,074\right.$ " to $\left.19 / 16^{\prime \prime}\right)$ and widths up to $4000 \mathrm{~mm}\left(13^{\prime}\right)$. Produced with 5,7 or 9 rolls depending on tolerance requirement.

ROUNDO also produces: Beading and joggling machines, welding positioners and other customized machines.

Exclusive North American Distributor:
Trilogy Machinery, Inc.
P. O. Box 70 Belcamp, MD 21017

Phone - 1-410-272-3600
Fax-1-410-272-3601
Offices \& Showroom:
4601 Richlynn Drive, Belcamp, MD 21017
www.trilogymachinery.com sales@trilogymachinery.com

ROUNDO
www.roundo.com

Roundo AB
Box 171
SE-281 22 Hässleholm
Sweden
Tel: +46 45142200
Fax: +46 45182404
info@roundo.com

[^0]: 1 Indicated diameters are valid for max. section in one or few passes. Smaller sections can be bent to smaller diameters.
 2) Smallest bending diameter depends on grade of deformation that can be accepted.
 3) Machine with extended shafts allows wider sections than specified.

